Molecular Characterization of a Novel Staphylococcus Aureus Surface Protein (SasC) Involved in Cell Aggregation and Biofilm Accumulation

نویسندگان

  • Katrin Schroeder
  • Mario Jularic
  • Samantha M. Horsburgh
  • Nina Hirschhausen
  • Claudia Neumann
  • Anne Bertling
  • Anja Schulte
  • Simon Foster
  • Beate E. Kehrel
  • Georg Peters
  • Christine Heilmann
چکیده

BACKGROUND Staphylococci belong to the most important pathogens causing implant-associated infections. Colonization of the implanted medical devices by the formation of a three-dimensional structure made of bacteria and host material called biofilm is considered the most critical factor in these infections. To form a biofilm, bacteria first attach to the surface of the medical device, and then proliferate and accumulate into multilayered cell clusters. Biofilm accumulation may be mediated by polysaccharide and protein factors. METHODOLOGY/PRINCIPAL FINDINGS The information on Staphylococcus aureus protein factors involved in biofilm accumulation is limited, therefore, we searched the S. aureus Col genome for LPXTG-motif containing potential surface proteins and chose the so far uncharacterized S. aureus surface protein C (SasC) for further investigation. The deduced SasC sequence consists of 2186 amino acids with a molecular mass of 238 kDa and has features typical of gram-positive surface proteins, such as an N-terminal signal peptide, a C-terminal LPXTG cell wall anchorage motif, and a repeat region consisting of 17 repeats similar to the domain of unknown function 1542 (DUF1542). We heterologously expressed sasC in Staphylococcus carnosus, which led to the formation of huge cell aggregates indicative of intercellular adhesion and biofilm accumulation. To localize the domain conferring cell aggregation, we expressed two subclones of sasC encoding either the N-terminal domain including a motif that is found in various architectures (FIVAR) or 8 of the DUF1542 repeats. SasC or its N-terminal domain, but not the DUF1542 repeat region conferred production of huge cell aggregates, higher attachment to polystyrene, and enhanced biofilm formation to S. carnosus and S. aureus. SasC does not mediate binding to fibrinogen, thrombospondin-1, von Willebrand factor, or platelets as determined by flow cytometry. CONCLUSIONS/SIGNIFICANCE Thus, SasC represents a novel S. aureus protein factor involved in cell aggregation and biofilm formation, which may play an important role in colonization during infection with this important pathogen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Staphylococcus aureus Fibronectin-Binding Protein A Mediates Cell-Cell Adhesion through Low-Affinity Homophilic Bonds

UNLABELLED Staphylococcus aureus is an important opportunistic pathogen which is a leading cause of biofilm-associated infections on indwelling medical devices. The cell surface-located fibronectin-binding protein A (FnBPA) plays an important role in the accumulation phase of biofilm formation by methicillin-resistant S. aureus (MRSA), but the underlying molecular interactions are not yet estab...

متن کامل

Molecular typing of nosocomial Staphylococcus aureus strains associated to biofilm based on the coagulase and protein A gene polymorphisms

Objective(s): Staphylococcus aureus is an important bacterial pathogen responsible for a variety numbers of nosocomial and community acquired infections. Biofilm formation is regarded as an important factor in the establishment of S. aureus infection. The contribution of the genetic background of S. aureus to biofilm formation is poorly understood. The aim of the present work was to genotype S....

متن کامل

Protein-based biofilm matrices in Staphylococci

Staphylococcus aureus and Staphylococcus epidermidis are the most important etiological agents of biofilm associated-infections on indwelling medical devices. Biofilm infections may also develop independently of indwelling devices, e.g., in native valve endocarditis, bone tissue, and open wounds. After attachment to tissue or indwelling medical devices that have been conditioned with host plasm...

متن کامل

Relationship of cell surface hydrophobicity with biofilm formation and growth rate: A study on Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli

Objective(s): This study was designed to determine the relationship of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli isolates in multispecies biofilms and their individual phenotypic characters in biofilm consortia. Materials and Methods:  The subject isolates were recovered from different food samples and identified on the basis of growth on differential and selective med...

متن کامل

Characterization of biofilm formation and virulence factors of Staphylococcus aureus isolates from paediatric patients in Tehran, Iran

Objective(s): Staphylococcus aureus can cause several infections. Its capability to form biofilm has been reported to be a vital property involved in the bacteria’s pathogenesis. Various genes contributing to biofilm formation have not yet been completely clarified. This study was designed to evaluate the factors influencing adherence and biofilm formation in S. aureus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009